

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

CHEMISTRY 0620/42

Paper 4 Theory (Extended)

February/March 2017

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

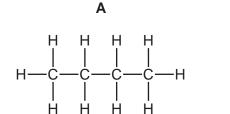
DO **NOT** WRITE IN ANY BARCODES.

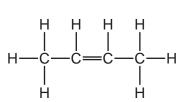
Answer all questions.

Electronic calculators may be used.

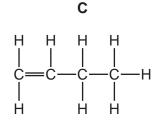
A copy of the Periodic Table is printed on page 16.

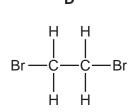
You may lose marks if you do not show your working or if you do not use appropriate units.

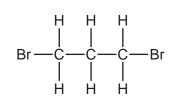

At the end of the examination, fasten all your work securely together.


The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.




1 (a) Five organic compounds have the following structures.



В

(i) Which compound is butane?

	-
11	- 1
 11	- 1

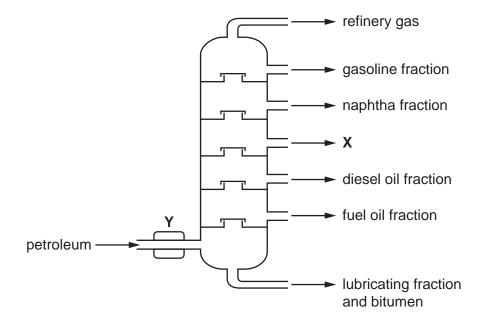
(ii) Which two compounds are structural isomers of each other?

F 4 5	٠.
11	
ъ.	

(iii) Which compound can be made by reacting an alkene with bromine?

·	F 4 1	٠.
	11	

(iv) Which compound is a saturated hydrocarbon?


[1]

(v) Which compound has the empirical formula C₂H₅?

(vi) Name the two products made during the complete combustion of compound ${\bf C}.$

(b) Petroleum can be separated into useful substances using the apparatus shown.

(i)	Name the fraction which is the most viscous.

(ii) Name the fraction with the smallest molecules.

		[1]
(iii)	Name the fraction which has the weakest attractive forces between molecules.	

[1]

(iv) Fraction X is used as jet fuel.

Name fraction X.

F4 5
11

(v) What happens at point Y on the diagram?

[Total: 11]

2 Silver dichromate, Ag₂Cr₂O₇, is a red insoluble salt.

Silver dichromate can be made by reacting silver nitrate solution with ammonium dichromate solution. The chemical equation for the reaction is shown.

$$2\mathsf{AgNO}_3(\mathsf{aq}) \ + \ (\mathsf{NH}_4)_2\mathsf{Cr}_2\mathsf{O}_7(\mathsf{aq}) \ \rightarrow \ 2\mathsf{NH}_4\mathsf{NO}_3(\mathsf{aq}) \ + \ \mathsf{Ag}_2\mathsf{Cr}_2\mathsf{O}_7(\mathsf{s})$$

(a)		scribe how you could obtain pure dry solid silver dichromate after mixing silver nit ution and ammonium dichromate solution.	rate
			[3]
(b)	(i)	The charge on a silver ion is +1.	
		Deduce the charge on the dichromate ion in Ag ₂ Cr ₂ O ₇ .	
			[1]
	(ii)	Write the ionic equation for the formation of silver dichromate in this reaction. State symbols are not required.	
			[1]
(c)	read	ute aqueous sodium hydroxide was added to the ammonium nitrate solution made in ction. The mixture was then warmed and damp Universal Indicator paper was held abmixture.	
	Stat	te and explain what would happen to the Universal Indicator paper.	
			[2]

(d) The apparatus shown was set up.

plastic trough	1	C
solid silver nitrate	S water	solid ammonium dichromate
solid silver nitrate	water	

After five minutes, a red solid appeared along the line marked **S** on the diagram.

	(i)	Explain why a red solid appeared along the line marked S .
		[3]
	(ii)	The experiment was repeated at a higher temperature.
		What effect, if any, would this have on the time taken for the red solid to appear? Explain your answer.
		[2]
(e)		monium dichromate, $(NH_4)_2Cr_2O_7$, undergoes thermal decomposition. products are chromium(III) oxide, nitrogen and water.
	(i)	What is meant by thermal decomposition?
		[2]
	(ii)	Write a chemical equation for the thermal decomposition of ammonium dichromate.
		[2]
		[Total: 16]

 ${\bf 3} \quad \text{Nitryl chloride, NO}_2 {\bf C} \it{l}, \, {\rm reacts \,\, with \,\, nitric \,\, oxide, \,\, NO}. \,\, {\rm The \,\, forward \,\, reaction \,\, is \,\, exothermic.}$

$$NO_2Cl(g) + NO(g) \rightleftharpoons NO_2(g) + NOCl(g)$$

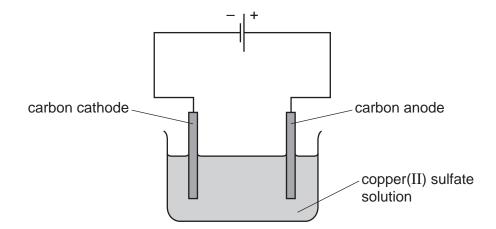
The reaction can reach equilibrium.

(a)	What is meant by the term <i>equilibrium</i> for a reversible reaction?
	[2]
(b)	Explain why increasing the temperature increases the rate of reaction.
	[3]
(c)	State and explain the effect, if any, of increasing the temperature on the position of equilibrium
	[2]
(d)	State and explain the effect, if any, of decreasing the pressure on the position of equilibrium.
	[O]

(e) Nitrosyl chloride, NOC $\it{l}_{\it{l}}$ is a gas at room temperature. It has the structure shown.

$$O = N - Cl$$

(i) Complete the dot-and-cross diagram to show the arrangement of the outer shell electrons in nitrosyl chloride.



[2]

(ii)	Nitrosyl chloride has a boiling point of –6 °C.
	Explain why nitrosyl chloride has a low boiling point.
	[2]

[Total: 13]

4 Copper(II) sulfate solution was electrolysed using the apparatus shown.

- (a) (i) Draw an arrow on the diagram to show the direction of movement of electrons in the wire.

 Label the arrow A. [1]
 - (ii) Draw an arrow on the diagram to show the direction of movement of positive ions in the copper(II) sulfate solution.

 Label the arrow **B**. [1]
- **(b)** Oxygen was formed at the anode and copper was formed at the cathode.
 - (i) The ionic half-equation for the formation of oxygen is shown.

$$4OH^- \rightarrow O_2 + 2H_2O + 4e^-$$

Explain why this reaction is oxidation.

F 4 3
111
 ניו

(ii) Write the ionic half-equation for the formation of copper at the cathode.

$\Gamma \cap I$
121
[-]

(c) The electrolysis was repeated using copper electrodes in place of carbon electrodes.

State and explain what happens to the masses of the anode and the cathode during this electrolysis.

	 	•••••
•••••	 	•••••

[Total: 9]

5

Iron	is extracted from its ore using a blast furnace.
(a)	In the blast furnace, coke burns in oxygen to produce heat energy and carbon dioxide.
	How is this carbon dioxide converted into carbon monoxide in the blast furnace?
	[1]
(b)	Calcium carbonate added to the blast furnace decomposes to form calcium oxide. Calcium oxide removes silicon(IV) oxide impurities from the iron in a neutralisation reaction.
	Write a chemical equation for the reaction of calcium oxide with silicon (IV) oxide. Suggest why it is a neutralisation reaction.
	[3]
(c)	The main impurity in iron obtained from the blast furnace is carbon.
	(i) Why must the high levels of carbon be lowered before the iron becomes a useful material?
	[1]
((ii) How is the carbon removed from the iron?
	[1]
(d)	Zinc is extracted from its ore. The ore contains zinc sulfide. The zinc sulfide is roasted in air to produce zinc oxide and sulfur dioxide.
	Zinc is then obtained from the zinc oxide using a blast furnace.
	(i) Give the name of the ore of zinc that contains zinc sulfide.
	[1]
	(ii) Write a chemical equation for the reaction that takes place when zinc sulfide is roasted in air.
	[1]
(Suggest why the sulfur dioxide should not be released into the atmosphere.
	[2]
	[-]

(iv) The temperature inside the blast furnace in which zinc is extracted is about 1000 °C.

The table gives some information about substances in the blast furnace in which zinc is extracted.

substance	melting point/°C	boiling point/°C				
carbon	sublimes at 4330 °C					
silicon(IV) oxide	1610	2230				
zinc	420	907				

Jse the data in the table to explain why the zinc obtained does ${f not}$ contain mpurities such as silicon(IV) oxide and carbon.	high levels of
	[2]
	[Total: 12]

6 Barium carbonate decomposes when heated

$$BaCO_3(s) \rightarrow BaO(s) + CO_2(g)$$

- (a) A student heated a 10.0 g sample of barium carbonate until it was fully decomposed.
 - (i) Calculate the number of moles of barium carbonate the student used.

(ii) Calculate the volume of carbon dioxide gas produced at room temperature and pressure. Give your answer in dm³.

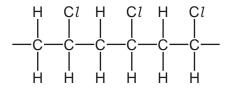
(b) The student added 2.00 g of the barium oxide produced to water.

BaO +
$$H_2O \rightarrow Ba(OH)_2$$

Calculate the mass of barium hydroxide that can be made from 2.00 g of barium oxide. The M_r of Ba(OH)₂ is 171.

(c) A 1.50 g sample of barium hydroxide was dissolved in water. The total volume of the solution was 100 cm³.

A 25.0 cm³ portion of the barium hydroxide solution was titrated against hydrochloric acid. The volume of hydrochloric acid required was 18.75 cm³.


$$Ba(OH)_2 + 2HCl \rightarrow BaCl_2 + 2H_2O$$

(i) Calculate how many moles of barium hydroxide were in the 25.0 cm³ portion used in the titration.

(ii) Calculate the concentration of the hydrochloric acid used.

[Total: 7]

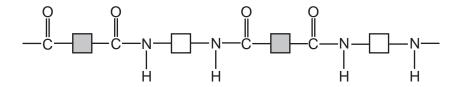
7 (a) The diagram shows part of the structure of an addition polymer.

- (i) Draw a circle around **one** repeat unit of the polymer.
- (ii) Draw the structure of the monomer from which this addition polymer is made.

[1]

[1]

(iii) Aqueous bromine is added to both the polymer and the monomer.


Describe what would be seen in each case.

with the polymer

with the monomer

[2]

(b) The diagram shows part of the structure of a condensation polymer.

(i) What type of condensation polymer is this?

.....[1]

(ii) On the diagram, draw a circle around **one** repeat unit of the polymer. [1]

(iii) Draw the structures of the **two** monomers from which the condensation polymer is made.

[2]

(c)	-	drolysis of a polymer gave a compound with the following composition by mass: C, 34.61%; 3.85%; O, 61.54%.
	(i)	Calculate the empirical formula of the compound.
		ampirical formula
		empirical formula = [3]
	(ii)	What additional information is needed to calculate the molecular formula of the compound?
		[1]
		[Total: 12]

14

BLANK PAGE

15

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

 	z He	helium 4	10	Se	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	Rn	radon			
=			o I	L	fluorine 19	17	Cl	chlorine 35.5	35	南	bromine 80	53	П	iodine 127	85	Ąŧ	astatine -			
5			∞ (0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъ	nolonium	116		/ermorium -
>								"0												=
2																		114	Εl	erovium
																				=
								<u>m</u>										112	ت د	copernicium —
																				Ē
]																	Ε
	- I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	H	hassium
									25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
					00	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg
		Key	tomic number	mic syml	name tive atomic ma				23	>	vanadium 51	41	g	niobium 93	73	ā	tantalum 181	105	g C	dubnium
			, as	ato	rela				22	j	titanium 48	40	Zr	zirconium 91	72	茔	hafnium 178	104	<u>₹</u>	rutherfordium -
						,			21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium -
_			ო :		lithium 7	1	Na	sodium 23	19	×	potassium 39	37	Rb	rubidium 85	55	S	caesium 133	87	ь Г	francium -
				II	II	II	II	II	III IV VI VII	II	III IV VI VII VII	II	II	III	III IV V VI VI VI VI VI	II	III IV V VI VII VI	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1

		_			
r Lu	lutetium 175	103	۲	lawrencium	ı
°	ytterbium 173	102	%	nobelium	ı
ee Tm	thulium 169	101	Md	mendelevium	ı
88 Fr	erbium 167	100	Fm	ferminm	ı
67 H0	holmium 165	66	Es	einsteinium	ı
° ^	dysprosium 163	86	ŭ	californium	1
65 Tb	terbium 159	97	Ř	berkelium	1
Gd 64	gadolinium 157	96	Cm	curium	1
e3 Eu	europium 152	92	Am	americium	ı
Sm	samarium 150	94	Pu	plutonium	ı
Pm	promethium	93	ď	neptunium	1
。 9 P	neodymium 144	92	\supset	uranium	238
59 Pr	praseodymium 141	91	Ра	protactinium	231
C 28	cerium 140	06	H	thorium	232
57 La	lanthanum 139	88	Ac	actinium	1

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).